翻訳と辞書 |
Stable normal bundle : ウィキペディア英語版 | Stable normal bundle
In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. There are analogs for generalizations of manifold, notably PL-manifolds and topological manifolds. There is also an analogue in homotopy theory for Poincaré spaces, the Spivak spherical fibration, named after Michael Spivak (reference below). ==Construction via embeddings== Given an embedding of a manifold in Euclidean space (provided by the theorem of Whitney), it has a normal bundle. The embedding is not unique, but for high dimension of the Euclidean space it is unique up to isotopy, thus the (class of the) bundle is unique, and called the ''stable normal bundle''. This construction works for any Poincaré space ''X'': a finite CW-complex admits a stably unique (up to homotopy) embedding in Euclidean space, via general position, and this embedding yields a spherical fibration over ''X''. For more restricted spaces (notably PL-manifolds and topological manifolds), one gets stronger data.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Stable normal bundle」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|